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ABSTRACT
An increasing number of consumer products include user in-
terfaces that rely on touch input. While digital fabrication
techniques such as 3D printing make it easier to prototype the
shape of custom devices, adding interactivity to such proto-
types remains a challenge for many designers. We introduce
Midas, a software and hardware toolkit to support the design,
fabrication, and programming of flexible capacitive touch
sensors for interactive objects. With Midas, designers first
define the desired shape, layout, and type of touch sensitive
areas, as well as routing obstacles, in a sensor editor. From
this high-level specification, Midas automatically generates
layout files with appropriate sensor pads and routed connec-
tions. These files are then used to fabricate sensors using dig-
ital fabrication processes, e.g., vinyl cutters and conductive
ink printers. Using step-by-step assembly instructions gener-
ated by Midas, designers connect these sensors to the Midas
microcontroller, which detects touch events. Once the proto-
type is assembled, designers can define interactivity for their
sensors: Midas supports both record-and-replay actions for
controlling existing local applications and WebSocket-based
event output for controlling novel or remote applications. In
a first-use study with three participants, users successfully
prototyped media players. We also demonstrate how Midas
can be used to create a number of touch-sensitive interfaces.

ACM Classification: H.5.2 [User Interfaces (D.2.2, H.1.2,
I.3.6)]: Prototyping.

Keywords: Design Tools; Prototyping; Fabrication; Capac-
itive Touch Sensing.

INTRODUCTION
Ubiquitous, cheap microprocessors have led to a vast in-
crease in consumer products with built-in digital user in-
terfaces. Many of these devices — thermostats, game con-
trollers, and personal medical devices, to name a few — rely
on touch sensing to provide input to their user interfaces.
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Figure 1: Midas enables users to define discrete and contin-
uous touch sensors with custom shapes and layout. It gen-
erates fabrication files and assembly instructions. Designers
can also define the interaction events of their prototype.

Digital fabrication processes like 3D printing and CNC ma-
chining make it easier to prototype the form of such products,
enabling designers to go directly from a digital 3D model
to a physical object. In addition, user interface prototyp-
ing tools have lowered the threshold to connect sensors to
graphical user interfaces. However, one main limitation of
current toolkits such as Phidgets [8], d.tools [11], .NET Gad-
geteer [29] or Arduino [2] is their reliance on pre-packaged,
off-the-shelf sensors such as momentary switches or slide
potentiometers. Using pre-packaged sensors has important
drawbacks. It constrains exploration: pre-defined physical
form factors restrict the space of realizable designs. For ex-
ample, available buttons can be too bulky or too small, or
sliders may be too long or too short. Most sensors also
lack physical flexibility: they are not easily applied to non-
planar surfaces or added to existing objects. Finally, a large
gulf of execution remains between digital design files and
physical prototypes: sensors must be manually placed and
wired one-by-one. This process is tedious and error-prone;
physical prototypes can easily deviate from digital design
files if a wire is incorrectly placed or forgotten. While re-
cent research has introduced tools to create touch sensors of
different shapes [12, 13, 31], their efforts focus on rapidly
constructible, low-fidelity prototypes. In contrast, our work
leverages digital design tools and enables designers to use
the growing range of fabrication processes to create custom,
durable, replicable touch sensors.



We take inspiration from the success of GUI editors. These
editors enable designers to specify layout, size, and charac-
teristics of widgets. They also isolate designers from specify-
ing the “plumbing” that connects widgets to event callbacks.
Our research goal is to make the creation of physical touch-
sensing interfaces as fluid as the creation of graphical user
interfaces in GUI editors.

As a first step in this direction, we introduce Midas, a soft-
ware and hardware toolkit to support the design, fabrication,
and programming of custom capacitive touch sensors (see
Figure 1). With Midas, designers first define the desired
shape, layout, and type of touch sensitive areas and obstacles
in a sensor editor interface. Designers can choose from but-
tons, 1D sliders, and 2D pad sensors. For discrete (button) in-
puts, designers can use polygon shapes or import graphics to
define custom shapes; other types are adjustable in size and
aspect ratio. Once a designer settles on a layout, Midas au-
tomatically synthesizes appropriate capacitive touch sensor
pads and routes connecting traces, avoiding user-defined ob-
stacles, to a central touch sensing module via a circuit board
grid routing algorithm [15]. Midas then generates layout files
and step-by-step instructions that designers use to fabricate
the sensors using rapid manufacturing techniques. Our proto-
type cuts sensors from adhesive-backed copper foil and vinyl
on a commercial vinyl cutter. We also demonstrate how to
use a circuit board milling machine to fabricate Midas sen-
sors. Designers then transfer their flexible, adhesive-backed
sensors onto the target object and connect the fabricated
sensors to a small microcontroller using the routed connec-
tions. The microcontroller detects touch events using charge-
transfer sensing [23] and forwards events to a PC. Once as-
sembled, designers can define interactivity on the PC using
the sensor editor. Midas supports both record-and-replay ac-
tions to control existing local applications, and WebSocket
event output for novel and remote applications. WebSockets
enable designers to write touch-sensitive applications using
standard Web technologies (HTML and JavaScript).

We demonstrate Midas’s expressivity with a number of ex-
amples and a first-use study. The authors used Midas to
create several touch-sensitive interfaces, including recreating
prototypes of existing and published systems. In an informal
study, three participants using Midas successfully prototyped
media player peripherals.

The main contributions of this paper are: 1) a novel method
to create custom-shaped, flexible capacitive touch sensors by
synthesizing sensor pads and auto-routing connections, as
well as instructions for assembly and use, from a high-level
graphical specification; 2) a design tool using this method
to enable users to to fabricate, program, and share touch-
sensitive prototypes; 3) an evaluation demonstrating Midas’s
expressivity and utility to designers.

The remainder of this paper is organized as follows: we re-
view related work, then describe how designers work with
Midas. We present Midas’s architecture and limitations, de-
scribe author-created Midas interfaces, report on a first-use
study, and conclude with a discussion of future work.

RELATED WORK
Midas builds upon prior work in physical computing toolkits
and direct touch sensing. We also discuss alternative remote
touch sensing approaches for prototyping and Midas’s rela-
tion to circuit board design and fabrication tools.

Physical Computing Toolkits
A substantial body of work has introduced toolkits that fa-
cilitate connecting different types of sensors and actuators
to user interfaces. Some research targets software devel-
opers, enabling them to extend their reach into the physi-
cal world via object-oriented wrappers to physical compo-
nents [8, 18, 29]. Other research explicitly targets prototyp-
ing by interaction designers [3, 10, 11, 13, 16, 17, 20, 21];
such projects employ direct manipulation interfaces or pro-
gramming by demonstration [7, 10] to enable experimenta-
tion by designers who do not write code; our work falls in
this group. A third set of projects are aimed at hobbyists and
learners: such systems focus on helping users learn how to
code and on fostering amateur communities [5, 25].

Many prior toolkits rely on libraries of prepackaged hard-
ware sensors which bring physical constraints with them; it is
difficult to create sensors of custom sizes, and it may be dif-
ficult to attach them to existing objects. Flexible multi-layer
conductive substrates [28] or embedded radio transceivers in
each component [16] give designers more freedom of place-
ment, but the components themselves are still fixed in size
and shape. In contrast, Midas focuses on only one type of
input—capacitive touch sensing—but provides explicit sup-
port for defining arbitrary sensor shapes and layouts.

Direct Touch Sensing
Most closely related to our work, BOXES [13] enables de-
signers to create custom touch sensors from office supplies
(e.g., thumb tacks); it also enables them to program re-
sponses to sensor input using record-and-replay of GUI ac-
tions (e.g., mouse clicks). We leverage the same program-
ming approach but target higher-fidelity prototypes: Midas
supports continuous as well as discrete (step-wise) sliders,
enables construction of more durable prototypes, and per-
mits designers to use digital design tools to create custom
sensor layouts. Since layouts are created in software rather
than cardboard and thumbtacks, Midas designs can be shared
and reproduced. In addition, Midas can also output events to
web applications rather than only local applications.

We also draw inspiration from projects that introduce various
forms of “sensor tape”—touch-sensitive material that can be
unrolled and cut to size to fit custom applications. Tactile-
Tape uses resistive graphite to create custom-sized slide po-
tentiometers [12], while Wimmer’s time-domain reflectome-
try approach [31] measures electric pulse reflections in a wire
to localize touch points. Both techniques lend themselves to
low-fidelity prototyping, but do not contribute design tools to
support arbitrary sensor shapes.

“Remote” Touch Sensing
Touch can also be sensed remotely, via sensors placed in the
environment, instead of the touched surface itself. Depth
cameras can be used to detect touch events by segmenting
fingers from background areas [30]. OmniTouch [9] uses this



Figure 2: The Midas workflow: (A) A user creates and positions touch elements in the sensor editor. (B) Midas generates
fabrication files and instructions. (C) The user fabricates the sensor on a cutting machine. (D) The user adheres sensors to a
target object and connects the Midas touch controller. (E) The user authors interactivity in the sensor editor.

technique to make arbitrary surfaces touch-sensitive. Real-
time motion capture systems have also been used to detect
touch, e.g., Vicon cameras in DisplayObjects [1]. Remote
sensing has the advantage that surfaces and objects do not
have to be specially prepared. The main disadvantage is that
the technique requires an instrumented environment or body-
worn hardware. In addition, infrared-based systems often do
not work outdoors, may struggle with occlusion, or need sig-
nificant processing power not available in mobile scenarios.
Prototypes that rely on remote sensing may have to be rewrit-
ten to change sensing technologies for production.

Design Tools for Fabrication
The placement of sensors and routing of connections in Mi-
das takes inspiration from electronic design automation tools,
e.g., Eagle [6] for printed circuit board design. We share
the use of auto-routing algorithms with such tools. How-
ever, circuit board design tools are usually based on a li-
brary of fixed-size components. Midas does not have these
restrictions because pads are used for human input sensing,
not for placing components. Users can resize and easily im-
port custom shapes in Midas. Finally, our work shares mo-
tivation with other applications leveraging digital fabrication
equipment. For example, design tools for plush toys [19]
and chairs [26] also generate fabrication files from high-level
specifications. Our contributions are complementary to and
independent from this research.

DESIGNING WITH MIDAS
This section demonstrates the interface affordances and the
workflow of Midas (Figure 2) with a concrete running ex-
ample: A designer would like to explore back-of-device and
bezel interactions for a mobile phone. In particular, she
would like to scroll through a list of emails with a slider on
the back of the device, and open, reply to, and delete mes-
sages via sensors on the bezel under the phone user’s thumb.

Drawing Sensors
Users start by loading an image of the physical prototype
they want to augment into Midas’s sensor editor. The sensor
editor (Figure 3) allows a user to create the sensor layout, and
define interactive behavior for each sensor. The background
device image helps designers with correct scaling and po-
sitioning. Currently, Midas supports 2D images, including
flattened 3D models. Future work will investigate direct sup-
port of 3D models. Sensor positioning works analogously
to a GUI editor; users choose sensor types and drag them

to the desired location on the canvas. Midas supports in-
dividual discrete buttons, one-dimensional sliders, and two-
dimensional pads. Buttons can take on arbitrary shapes—
users can import any graphics file (in PNG format) or draw
custom polygons. Sliders and pads are currently restricted
to rectangular shapes; however, their size and aspect ratio
can be modified to fit the requirements of the prototype at
hand. Users may also define obstacles using the same draw-
ing tools to restrict routing — Midas will route connections
around these obstacles.

In our phone example, the designer creates one slider and
three discrete buttons. For the buttons, she loads custom
shapes created in a drawing program. She defines a circu-
lar obstacle around the phone’s camera so the camera will
not be obscured during connection routing.

Fabricating and Applying Flexible Sensors
Once users complete a layout, clicking the create stickers
button generates fabrication files. First, certain components
are automatically split into multiple sensing pads. For in-
stance, a slider can generate four interdigitated pads (Fig-
ure 6, third template) for continuous finger tracking, while
2D pads result in two separate layers of triangular pads (Fig-
ure 7). Second, Midas generates conductive traces that will
connect each of the pads to Midas’s touch controller. An ad-

Figure 3: Midas’s sensor editor takes its cues from GUI edi-
tors: designers first lay out sensing areas through direct ma-
nipulation; they later define interactions for each sensor using
a property inspector.



Figure 4: Auto-generated step-by-step instructions in HTML
format lead the user through the fabrication and assembly
process. Relevant design files are hyperlinked to specific
steps; instructions also include general help on processes,
e.g., how to use transfer tape to apply a sensor onto an object.

ditional mask file, to be fabricated in vinyl, includes cutouts
of only the sensor shapes: it will cover the traces both for aes-
thetic reasons and to prevent stray touch events. Midas’s con-
nection routing determines the exact position of each touch
area. Should the user want to experiment with positioning,
Midas can also skip routing and only generate individual
touch pads. However, the user must then manually connect
wires to each sensor and register the sensor in the interface.

The pad creation and routing step generates a set of graph-
ics files (in SVG format) and an instruction sheet (in HTML)
which appears in the user’s browser (see Figure 4). This sheet
contains step-by-step instructions describing how to fabricate
the generated files. For our implementation, instructions in-
clude which SVG files to cut in which material and how to
transfer the cut designs to the prototype object.

In our phone example, the designer generates one SVG file
for the touch areas and one to mask the traces, which pre-
vents stray touch events. Following the generated instruction
web page, she feeds copper foil into her vinyl cutter and cuts
the corresponding SVG file. She then substitutes a vinyl roll
and cuts a mask layer. As both materials have adhesive back-
ing, she sticks the copper and vinyl layers onto the phone
she wishes to modify. Once the adhesive layers are applied,
she tapes the end of the routed traces to the Midas hardware,
which is plugged into her computer via USB. Since the de-
sign files for her prototype are digital, she also sends them to
colleagues in another office for a second, remote test. With
the design files and a vinyl cutter, her colleagues can then
recreate a working Midas prototype.

Connecting Hardware to Software
Midas senses touch events with a dedicated touch controller
circuit board. Users do not have to program or assemble any
electronics — they may treat the entire setup as a prototyping
“dongle”. Users do have to connect the end of the traces to
the controller’s rainbow ribbon cable, either by taping the
cable leads onto copper traces or by soldering them.

To complete a prototype, users return to the sensor editor. In
many toolkits, mapping hardware components to named ob-
jects in software can be error-prone—it is easy to swap wires
or connect to an incorrect pin. If the user prints a fully routed
design, Midas generates instructions for aligning touch areas
with specific ribbon cable colors. If the user decided to wire

Figure 5: Users start to record GUI interactions in the sensor
editor (A); they can for example activate the browser, enter
text (B), and click on a search result (C), before concluding the
recording (D). This sequence of actions can then be triggered
by a touch event.

the design herself, this mapping has to be authored. Midas
uses guided demonstration to assist with this process. For
buttons, the user selects an input element in the UI and clicks
the tie to stickers button; next she touches the correspond-
ing copper sensor. Midas listens for status change events and
automatically assigns hardware pins. Midas registers sliders
similarly: users are asked to swipe a finger along the slider.

Midas’s editor interface displays incoming touch data visu-
ally, re-coloring touched sensors in pink on the sensor editor,
to aid the user in debugging. If something goes wrong dur-
ing the connection stage, it is apparent to the user. Midas
also reads the data stream for common errors. If it detects
that two wires may be too close together and triggering each
other, or that there may be a faulty connection from a wire
to the board, that information is displayed to the user in a
connection status area.

Adding Interactivity
Designers have two options for authoring interactivity: record-
and-replay of mouse and keyboard events (a strategy adopted
from BOXES [13] and Exemplar [10]), or touch event output
to control applications via WebSockets. To record and replay
interactions, designers select a sensor in the editor, then click
on the record interaction button. They can then control any
open application (e.g., start or stop a media player applica-
tion, or drag a volume slider). Midas records the generated
keyboard and mouse events and can replay them later in re-
sponse to touch input (Figure 5).

The types of desktop UI actions that can be executed depend
on the button type. Individual buttons can be tied to an in-
teraction script, a sequence of keyboard and mouse events
recorded by the user. Sliders are linked to exactly one hori-
zontal or vertical line on the screen to be controlled by clicks
along its length. 2D pads can control a 2D area on the screen
analogous to a slider area. For sliders and pads, the user must
capture the location on the screen that she wishes to control
with the slider or pad. This is done by clicking at each end
of the slider or in opposite corners of the pad, guided by Mi-
das prompts. As the user adjusts the sensitivity (number of
discrete buttons) of the slider or pad to be printed, the in-
teraction with the captured on-screen slider or pad becomes
more fine-grained, also.

Record-and-replay does not require programming, but it is
brittle; changes in application layout or response latency can
break a recorded sequence. To let users author more robust
interactions, Midas uses WebSockets to send touch events
over the Internet. This requires programming, but WebSock-



Figure 6: Midas can generate four different types of sensors:
discrete buttons, discrete sliders, continuous sliders, and 2D
pads. The pad uses row-column scanning and requires multi-
layer construction because traces cross.

Figure 7: 2D pad sensors are fabricated in two different layers
that are then superimposed. Because each copper layer has
a vinyl backing, no other inter-layer masking is required.

ets enable designers to work in the languages many are most
familiar with: HTML and JavaScript.

In our phone example, the designer chooses WebSockets as
she wants to demonstrate how touch events can control a mo-
bile email application. She creates a mockup in HTML and
writes JavaScript functions to receive touch events.

ARCHITECTURE AND IMPLEMENTATION
This section describes the architecture and algorithms under-
lying the Midas system.

Generating Sensor Pads
The Midas sensor editor supports four types of touch sensors:
discrete buttons, two types of 1D sliders, and 2D pads. The
resolution of pads and segmented sliders can be set through a
parameter in the sensor editor. The current editor is written in
Java using the Swing GUI Toolkit. Figure 6 shows example
templates for each sensor type. The two types of sliders are
based on different sensing approaches. The first, segmented
slider, is made up of individual rectangular touch segments.
Users specify how many segments the slider has. Continuous
sliders offer finer resolution, but require a different detection
approach. We use Bigelow’s design of interdigitated elec-
trodes [4]. In this design, as a finger slides across the pads,
the surface area of the pads underneath the finger changes as
pad digits get smaller or larger. Because capacitance is pro-
portional to contact surface area, the measured capacitance of
each segment changes during the finger’s slide. Though finer
in resolution, only one such slider is supported by our cur-
rent sensing hardware. Increasing the number of supported
sliders is possible with additional engineering effort.

2D pads use row-column scanning to reduce connecting traces.
For example, a 5× 5 array requires 25 individual traces, but
only 5 + 5 = 10 row-column traces. This design requires a
dual-layer construction where horizontal traces are isolated
from vertical traces. We use copper foil applied to vinyl foil
in our cutter, so each layer already has an insulating sub-
strate. Designers thus first apply the bottom conductive layer,
then place the top layer directly over it (see Figure 7).

To create a mask layer that covers the topmost copper traces,
we generate a design file containing pads from all layers, but
no traces. This layer is cut in vinyl. While for other layers
designers transfer the pads and traces, for the mask layer they
peel and transfer the surrounding “background” shape with
sensors and obstacles cut out (see Figure 12, left).

Routing Pads to the Touch Controller
Midas employs an auto-routing algorithm to generate con-
ductive traces connecting electrodes to the Midas touch con-
troller. User-defined obstacles are avoided. We implement
Lee’s breadth-first maze routing algorithm for single layer
paths [15]. For 2D pads, we perform two independent rout-
ings: one for the row layer and one for the column layer. Our
current algorithm does not generate vias (connections be-
tween different conductive layers). When auto-routing fails,
we employ an iterative search by adjusting the position where
traces connect to sensor pads, routing the sensors in a differ-
ent order, or moving the position where target traces connect
to the touch controller. In our experience, this basic rout-
ing algorithm has performed adequately, though there are de-
signs that cannot be successfully routed. For such cases, the
algorithm could be replaced with more sophisticated routing
techniques that include user input, though such techniques
require that the user has a correct mental model of the rout-
ing process.

Midas currently offers generic suggestions when routing fails,
e.g.: “Sensor reply may be too close to sensor delete. Try
moving sensors away from the edge and each other.”

Fabrication
Midas generates vector graphics files in SVG format for the
electrode and mask layers. These files can be used to con-
trol digital fabrication processes. Our prototype currently
cuts conductive, adhesive-backed copper foil on a commer-
cial vinyl cutter—a plotter with a cutting knife instead of a
pen. This medium has multiple advantages. First, it is cost-
effective and readily available: vinyl cutters are in the same
price range as laser printers (ours, a tabletop model with a
35cm bed, cost $200); and copper foil costs a few dollars
per foot. Second, copper has excellent conductivity. Third,

Figure 8: Example of a touch sensor manufactured through
an alternative process of circuit board milling.



flexible, adhesive foil is easy to apply to non-planar surfaces.
However, there are important drawbacks as well. Most im-
portantly, the cutting process and manual weeding (remov-
ing background material) determines a minimum feature size
for traces. Thin geometric features can also break during
transfer, and the weeding process can be tedious and time-
consuming. We found the most success came from adhering
the copper sheets to vinyl sheets and cutting both layers at
once. This setup has the added benefit of allowing designers
to prototype touch interactions on conductive surfaces (e.g.,
aluminum casing) as vinyl is an excellent insulator.

Alternative fabrication processes may be preferable to copper
foil cutting when higher precision or durability is required.
Two promising approaches are circuit board milling, which
can produce smaller features but is limited to rigid boards;
and conductive inkjet printing, which can produce the small-
est features, but is not yet available to many end users. As
a proof of concept, we produced a touch sensor on an LPKF
circuit board milling machine (see Figure 8).

Capacitive Touch Sensing
The Midas touch controller (Figure 9) is based on an Atmel
microcontroller board [27] and capacitive sensing chips from
Quantum (QT1106) and Freescale (MPR121) Semiconduc-
tors. For discrete inputs, both chips rely on charge-transfer
sensing using single-wire electrodes: the electrodes are part
of a simple RC circuit in which an output pin is set high,
and time is measured until an input pin also reads high. This
time is proportional to the capacitance of the circuit: when a
person touches an electrode, the circuit capacitance and the
charge transfer time both increase. The Quantum chip also
implements Bigelow’s design to extract continuous position
readings from interdigitated electrodes [4]. The microcon-
troller runs software written in embedded C to interface with
the sensor chips and communicates touch data to a connected
computer over USB. It recalibrates the touch sensing chips
periodically to ensure floating sensor values do not lead to
erroneous touch readings.

Event Output
Once the user has assigned interface scripts to sensors, Midas
listens for events from the touch controller. When a touch

Figure 9: The Midas touch controller board uses a commer-
cial capacitive charge transfer detection chip to sense touch
events. Events are relayed to a computer via a mini USB con-
nection on the back. The ribbon cables are used to connect
to the end of routed traces. A US quarter is shown as a size
reference.

event matches the key of a saved interaction, that interac-
tion’s associated script is executed.

Record-And-Replay. In record-and-replay, the user selects a
sensor and records a sequence of mouse and keyboard actions
that should be played back when the sensor is touched. Early
prototypes of Midas used Sikuli for this purpose—a script-
ing language based on computer vision analysis of screen-
shots [34]. While more robust than hardcoded click loca-
tions, Sikuli was designed for automation scripts rather than
interactive control, and the latency of invoking and execut-
ing scripts was too high. Our current prototype uses the Java
Robot API [14] to captures and replay both mouse clicks and
keyboard events. We share this approach with the BOXES
system [13].

WebSocket Communication with Web Applications. Record-
and-replay is restricted to applications running on the same
machine as the sensor editor, and it is limited to mouse and
keyboard event injection. To surmount this limitation, Midas
can also export touch events to remote clients via a built-in
server using the WebSockets API. For example, an applica-
tion running on a smart phone can open a WebSocket con-
nection to Midas and receive a callback for any Midas button,
slider or pad event. The callback function receives an event
object describing which sensor changed state, and the value
of the new state (e.g., on/off, or slider value).

Our WebSockets server is implemented in node.js using the
socket.io library. We chose WebSockets because it offers
full-duplex communication at low latencies, and, more im-
portantly, is supported by modern web browsers. This means
designers can author user interfaces that respond to Midas
touch input in HTML and JavaScript. There are two main
benefits to these technologies: (1) many designers are al-
ready familiar with them from web design; (2) developed
interfaces can be deployed on any device with a compatible
browser, even if that device does not offer a way to directly
connect external hardware. For example, it is difficult to di-
rectly connect sensors to Apple’s iPhone or iPad.

With our WebSockets architecture (Figure 10), designers
open a browser and enter the URL of an HTML file they
have placed in the Midas server directory. This file opens a

Figure 10: Midas’s socket event output enables designers
with programming knowledge to create web applications in
HTML and JavaScript that react to touch input outside the
screen area of a phone or tablet.



socket connection from the phone browser to Midas. When
Midas receives events from the touch controller, it forwards
them to the client, which can then show visual feedback.

Debugging. Midas offers basic debugging support. The in-
terface displays incoming touch information from the mi-
crocontroller, highlighting activated sensors. We have also
implemented basic regular expression filtering on the touch
stream to help the user identify potential problems. A time-
stamp and code representing each touch event is stored in a
stream. When a sensor is “on” for more than 10 seconds,
Midas reports that that sensor may be touching another wire.
When a touch sensor “flickers” on and off more than twice
within 500ms, Midas suggests that there may be a faulty con-
nection from that sensor to the microcontroller.

LIMITATIONS
Our current prototype has some important limitations. A few
are inherent to our chosen approach, while others could be
mitigated with additional engineering.

First, the current manufacturing process places certain phys-
ical constraints on realizable designs. Both the accuracy of
the vinyl cutter on copper and challenges in weeding and
transferring cut designs currently restrict traces to approxi-
mately 2mm minimum thickness. Our cutter also has dif-
ficulties with acute angles such as those in the interdigitated
slider. A higher-quality cutter could mitigate these problems.

Second, the touch sensing chips have limited capacity. In
addition, continuous sliders use different hardware resources
than other inputs and therefore need to be treated differently
by the designer. The QT1106 has 7 discrete sensing chan-
nels and can support one continuous slider; the MPR121 has
13 discrete channels. The sensor editor keeps track of re-
sources required by the current design and notifies designers
if they exceed the capacity of the touch controller. While we
currently do not support using multiple touch controllers for
a single project, a future circuit board revision could offer
such support.

Third, our touch controller must be tethered to a computer.
This reduces mobility: prototypes cannot currently be tested
outside the lab. Direct connections to mobile devices or inte-
grated wireless radios could address this constraint.

Fourth, Midas does not offer on-device output; a designer
must have access to a screen. Use of WebSockets allows this
screen to be on any device connected to the Internet, however
future work can address on-device output.

Finally, the sensor editor supports only flat, 2D device mod-
els. Some 3D shapes can be flattened and these flat files can
be imported. Future work could investigate the creation of a
plugin for a CAD tool that would aid designers in creating
more complex 3D sensor surfaces.

EVALUATION
To understand the user experience of working with Midas,
and to assess its expressivity, we implemented some touch-
sensitive applications and conducted an informal first-use
study of Midas with three participants. We have also released
Midas as an open-source toolkit to acquire further usage data.

Figure 11: We implemented Wobbrock’s Edgewrite on the
back of a cell phone using a 2x2 pad and WebSocket events
sent to a web page.

Figure 12: Our music postcard lets users sample tracks by
different artists. Left: Circuit and mask layer; Right: assem-
bled postcard.

Example Applications
To demonstrate Midas’s expressivity, we built several inter-
active systems that used all sensor types, and output using
both WebSockets and record-and-replay.

Text Entry. Wobrrock’s EdgeWrite [33] is a unistroke text
entry technique based on activating a series of corner points
of a rectangle. Wobbrock demonstrated that this technique
can be implemented using four discrete capacitive touch sen-
sors [32]. We cut four discrete buttons and a mask with Mi-
das, attached them to the back of a smartphone, and imple-
mented the EdgeWrite recognition algorithm in JavaScript
(Figure 11). Using socket events, we demonstrated how
EdgeWrite can be used to enter text on the back of a mobile
device, leaving the screen unobstructed. The implementa-
tion is functional, though latency for detecting single button
presses was higher than expected (>100ms). We plan to in-
vestigate ways to increase responsiveness in future work.

Game Controller. To test the responsiveness of Midas’s con-
tinuous slider, we created a simple game controller for Break-
out, in which players horizontally position a paddle to bounce
a ball into layers of blocks. In less than fifteen minutes, we
attached the slider that we fabricated on the circuit board
milling machine to a 7-inch monitor and mapped slider po-
sition to paddle position using record-and-replay. The slider
is more responsive than individual buttons, and we were able
to control the paddle accurately enough for gameplay. The
slider’s response is non-linear across certain regions, how-
ever, and accounting for this is left to future work.

Music Postcard. At a recent media festival, a promotional
poster printed with conductive ink enabled passersby to se-
lect and play music from a number of artists by touching



Figure 13: For our papercraft pinball machine, we defined
the negative space in the template as an obstacle to restrict
sensor routing.

corresponding areas on the poster [22]. We implemented a
postcard-sized version of this poster (Figure 12). We scaled
back the size to conserve resources; large designs are possi-
ble and only restricted by the cutter’s bed width. Our version
uses six discrete buttons and one continuous slider to control
playback and volume of music clips on a desktop computer.
We again cut a vinyl mask layer to prevent stray touch events.
We used Midas’s record-and-replay function to remote con-
trol the iTunes music player.

Papercraft Pinball Machine. Papercraft is the art of cutting
and folding paper into 3D models. To demonstrate how Mi-
das can be used for attaching sensors to more complex 3D
shapes, we created a papercraft pinball machine which can
control a pinball game on a laptop. First we downloaded a
template design for a pinball machine [24], cut it out, and
assembled it. We then loaded the already-flattened template
model into Midas’s 2D editor interface and defined the neg-
ative space around the model as a routing obstacle (Figure
13). This guaranteed that all trace routing would be on the
surface of the model. After attaching the two buttons for the
bumpers and a continuous slider for ball release control, we
used record and replay to control a desktop pinball game.

Informal Evaluation
To gauge the usability of Midas, we recruited three partici-
pants to prototype a media-controlling computer peripheral.
Two participants were graduate students at UC Berkeley (in
Computer Science and Mechanical Engineering), one was a
software engineer at a local technology company. All had
some prior experience with prototyping and electronics.

Procedure. Participants received a walkthrough of Midas
including a simple record-and-replay task to launch a browser
based on a single button input. Participants were then asked
to design a physical control interface for a media player
(iTunes). No other constraints were given as we wished
to encourage exploration. Sessions lasted up to one hour.
Participants completed a post-task questionnaire with open-
ended questions on interface usability and workflow utility.

Results. All participants successfully designed media play-
ers (Figure 14). Participants commented positively on how
Midas aided them with the task of physical construction—
both by routing connections and through the generated in-
structions. Record-and-replay was easy to comprehend and
effective for the given task. Though the task did not require

Figure 14: A study participant’s sensor layout for a PC media
player peripheral.

programming, two participants expressed interest in receiv-
ing touch events in their own applications. We take this as
corroboration for the utility of our WebSocket server.

Participants identified several areas for improvement. Two
participants felt that the instructions, while helpful, did not
provide sufficiently detailed information for certain steps
(e.g., weeding extra material around the printed sensors).
Two desired videos rather than static images. We have since
added animations to our instructions to address their request.

Midas’s routing algorithm did not find a solution for one ver-
sion of one participant’s design. The participant was unable
to identify the underlying problem since he was unfamiliar
with auto-routing and the interface did not provide informa-
tion about the algorithm. In the revised interface we include
tips for users on how to adapt designs for successful routing.

Finally, all participants requested richer feedback in the in-
terface about touch events from the hardware controller. The
identified challenges are not fundamental to our architecture
and have been addressed in recent design iterations.

CONCLUSION AND FUTURE WORK
This paper presented Midas, a software and hardware toolkit
to support the design, fabrication, and programming of ca-
pacitive touch sensors. Midas leverages the familiar paradigm
of the GUI editor to define shape, layout, and interactivity of
capacitive touch sensors. To help designers bridge the gap
between digital designs and physical realization, Midas auto-
routes connections, generates instructions, and offers sensor
registration by demonstration. Since generated design files
are digital, Midas also enables sharing and replication of pro-
totype designs. Our informal evaluation suggests that work-
ing interactive objects can be built with our current imple-
mentation and that the interface is accessible for prototyping.

Our future work seeks to address identified limitations and
expand into new areas. First, we would like to explore meth-
ods to paint touch-sensitive areas directly onto 3D CAD
models and synthesize pads and routes for more complex ob-
jects. Such a function could come as a plugin for modeling
software such as SolidWorks. In addition, we are investi-
gating fabrication processes and plan to continue exploring
conductive ink printing. We are looking into wireless Midas
prototypes to permit testing without a USB tether. Finally,
we would like to expand beyond capacitive charge-transfer
sensing with a prototyping system that can also assist with



other inputs. In general, we are interested in more closely in-
tegrating user interface design and digital fabrication tools.
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